Vacinas de RNA mensageiro: da Revolução tecnológica à eficácia no controle da pandemia de COVID-19

Autores

  • Ellen Cristina Silva Estudante de Graduação em Ciências Biológicas; Universidade Estadual da Paraíba; João Pessoa, PB
  • Daniela Santos Pontes Doutora em Genética, Professora do Departamento de Ciências Biológicas do Centro de Ciências Biológicas e Sociais Aplicadas; Universidade Estadual da Paraíba; João Pessoa, PB

DOI:

https://doi.org/10.58203/Licuri.22941

Palavras-chave:

Vacinas gênicas. Imunização. Resposta imune. SARS-COV-2

Resumo

O surgimento do novo coronavírus SARS-COV-2 em 2019 desencadeou a pandemia da COVID-19, resultando em milhões de mortes e destacando a importância da vacinação em massa. Entre as estratégias emergentes, as vacinas de RNA mensageiro (RNAm) surgiram como uma ferramenta crucial para conter a disseminação do vírus e reduzir as mortes pela doença. Considerando a segurança e eficácia dessas vacinas contra a COVID-19, o presente estudo teve como objetivo principal, realizar uma revisão sistemática da literatura sobre os estudos envolvendo o desenvolvimento, evolução e utilização do RNAm como vacinas. Foram levantadas e analisadas informações relevantes sobre histórico, propriedades específicas, imunogenicidade, eficiência e segurança das vacinas de RNAm, enfatizando as vacinas contra COVID-19 que foram utilizadas pela primeira vez na imunização em massa de humanos. Essa revisão mostra a relevância das pesquisas para a saúde pública, reforçando a importância do desenvolvimento das vacinas e dos programas de vacinação, alertando que o aprimoramento e uso dessas novas formulações biotecnológicas poderão ser úteis no tratamento e combate a doenças patogênicas e cancerígenas.

Downloads

Não há dados estatísticos.

Referências

ADA, G. L. The ideal vaccine. World Journal of Microbiology & Biotechnology, v. 7, n. 2, p. 105–109, 1 mar. 1991.

Anvisa concede primeiro registro definitivo para vacina contra a Covid-19 nas Américas. Disponível em: https://www.gov.br/pt-br/noticias/saude-e-vigilancia-sanitaria/2021/02/anvisa-concede-primeiro-registro-definitivo-para-vacina-contra-a-covid-19-nas-americas . Acesso em: 27 de março de 2024.

Anvisa aprova registro de vacina bivalente contra a Covid-19. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2023/anvisa-aprova-registro-de-vacina-bivalente-contra-covid-19 . Acesso em: 27 de março de 2024.

Anvisa aprova registro da vacina Spikevax monovalente. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2024/anvisa-aprova-registro-da-vacina-spikevax-monovalente . Acesso em: 29 mar. 2024.

Anvisa aprova registro da vacina Spikevax monovalente. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2024/anvisa-aprova-registro-da-vacina-spikevax-monovalente . Acesso em: 29 mar. 2024

ALTURKI, S. O. et al. The 2020 Pandemic: Current SARS-CoV-2 Vaccine Development. Frontiers in Immunology, v. 11, 19 ago. 2020.

ANAND, P.; STAHEL, V. P. The safety of Covid-19 mRNA vaccines: a review. Patient Safety in Surgery, v. 15, n. 1, 1 maio 2021.

ANDREWS, N. et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. New England Journal of Medicine, v. 386, n. 16, 2 mar. 2022.

BORAH, P. et al. Perspectives on RNA Vaccine Candidates for COVID-19. Frontiers in Molecular Biosciences, v. 8, 25 mar. 2021.

CORBETT, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 28 jul. 2020.

EDWARDS, D. K. et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. Journal of Translational Medicine, v. 15, n. 1, 3 jan. 2017.

EL SHALY, H. M. et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. New England Journal of Medicine, 22 set. 2021.

ESPESETH, A. S. et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. npj Vaccines, v. 5, n. 1, 14 fev. 2020.

FOTIN-MIECZEK, M. et al. Messenger RNA-based Vaccines With Dual Activity Induce Balanced TLR-7 Dependent Adaptive Immune Responses and Provide Antitumor Activity. Journal of Immunotherapy, v. 34, n. 1, p. 1–15, jan. 2011.

GRANADOS-RIVERON, J. T.; AQUINO-JARQUIN, G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomedicine & Pharmacotherapy, v. 142, p. 111953, out. 2021.

HOSANGADI, D. et al. Enabling emergency mass vaccination: Innovations in manufacturing and administration during a pandemic. Vaccine, v. 38, n. 26, p. 4167–4169, maio 2020.

JACOB, F.; MONOD, J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, v. 3, n. 3, p. 318–356, jun. 1961.

JAGESSAR, S. A. et al. Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys. Journal of Neuroimmune Pharmacology, v. 7, n. 3, p. 557–570, 30 jun. 2012.

KARIKÓ, K. et al. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, v. 23, n. 2, p. 165–175, ago. 2005.

KAUSHIK, R.; KANT, R.; CHRISTODOULIDES, M. Artificial intelligence in accelerating vaccine development - current and future perspectives. Frontiers in Bacteriology, v. 2, 9 out. 2023.

KACZMAREK, J. C.; KOWALSKI, P. S.; ANDERSON, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, v. 9, n. 1, 27 jun. 2017.

KIM, S. C. et al. Modifications of mRNA Vaccine Structural Elements for Improving mRNA Stabschety and Translation Efficiency. Molecular & Cellular Toxicology, v. 18, n. 1, p. 1–8, 20 set. 2021.

KYTE, J. A. et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Therapy, v. 13, n. 10, p. 905–918, 1 out. 2006.

KUHLMANN, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. The Lancet, v. 399, n. 10325, p. 625–626, 12 fev. 2022.

LAMB, Y. N. BNT162b2 mRNA COVID-19 vaccine: First approval. Drugs, v. 81, n. 4, p. 1–7, 8 mar. 2021.

LARKINS, B. A.; JONES, R. A.; TSAI, C. Y. Isolation and in vitro translation of zein messenger ribonucleic acid. Biochemistry, v. 15, n. 25, p. 5506–5511, 1 dez. 1976.

LI, J. et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. International Journal of Cancer, v. 134, n. 7, p. 1683–1694, 8 out. 2013.

LI, D. et al. Messenger RNA-Based Therapeutics and Vaccines: What’s beyond COVID-19? ACS Pharmacol. Transl. Sci, v. 6, n. 7, p. 943–969, 3 jul. 2023.

LIANG, F. et al. Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, v. 25, n. 12, p. 2635–2647, dez. 2017.

LIU, T.; LIANG, Y.; HUANG, L. Development and Delivery Systems of mRNA Vaccines. Frontiers in Bioengineering and Biotechnology, v. 9, n. 718753, 27 jul. 2021.

LU, G. et al. Novel vaccine design based on genomics data analysis: A review. Scandinavian Journal of Immunology, v. 93, n. 3, 26 out. 2020.

LUISI, K. et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances, v. 6, n. 32, p. eaba5068, ago. 2020.

MALONE, R. W.; FELGNER, P. L.; VERMA, I. M. Cationic liposome-mediated RNA transfection. Proceedings of the National Academy of Sciences of the United States of America, v. 86, n. 16, p. 6077–6081, 1 ago. 1989.

MEYER, M. et al. Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease. The Journal of Infectious Diseases, v. 217, n. 3, p. 451–455, 1 fev. 2018.

MISTRY, P. et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Frontiers in Immunology, v. 12, p. 809244, 2021.

OMERSEL, J.; KARAS KUŽELIČKI, N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. Journal of Clinical Medicine, v. 9, n. 11, p. 3561, 5 nov. 2020.

PAWLOWSKI, C. et al. FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med, v. 2, n. 8, p. 979-992.e8, ago. 2021.

PARDI, N. et al. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, v. 17, n. 4, p. 261–279, 12 jan. 2018.

PASCOLO, S. The messenger’s great message for vaccination. Expert Review of Vaccines, v. 14, n. 2, p. 153–156, 14 jan. 2015.

RICHNER, J. M. et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, v. 168, n. 6, p. 1114-1125.e10, mar. 2017.

ROMANI, B.; KAVYANIFARD, A.; ALLAHBAKHSHI, E. Antibody production by in vivo RNA transfection. Scientific Reports, v. 7, n. 1, 7 set. 2017.

SAHIN, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T-cell responses. Nature, v. 586, 30 set. 2020.

SCHNEE, M. et al. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLOS Neglected Tropical Diseases, v. 10, n. 6, p. e0004746, 23 jun. 2016.

SEBASTIAN, M. et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunology, Immunotherapy, v. 68, n. 5, p. 799–812, 15 fev. 2019.

STEENSELS, D. et al. Comparison of SARS-CoV-2 Antibody Response Following Vaccination With BNT162b2 and mRNA-1273. JAMA, 30 ago. 2021.

STERNBERG, A.; NAUJOKAT, C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sciences, v. 257, p. 118056, jul. 2020.

SZABÓ, G. T.; MAHINY, A. J.; VLATKOVIC, I. COVID-19 mRNA vaccines: Platforms and current developments. Molecular Therapy, fev. 2022

TROUGAKOS, I. P. et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends in Molecular Medicine, v. 28, n. 7, abr. 2022.

TSENG, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nature Medicine, 21 fev. 2022.

VERBEKE, R. et al. Three decades of messenger RNA vaccine development. Nano Today, v. 28, p. 100766, 1 out. 2019.

VERMA, S. et al. Computational tools for modern vaccine development. Human Vaccines & Immunotherapeutics, 23 set. 2019.

WOLFF, J. et al. Direct gene transfer into mouse muscle in vivo. Science, v. 247, n. 4949, p. 1465–1468, 23 mar. 1990.

WORLD HEALTH ORGANIZATION. World health statistics 2023. [s.l.] World Health Organization, 2023.

XUE, T. et al. RNA Encoding the MPT83 Antigen Induces Protective Immune Responses against Mycobacterium tuberculosis Infection. Infection and Immunity, v. 72, n. 11, p. 6324–6329, nov. 2004.

Downloads

Publicado

13.05.2024