Tratamento de alta temperatura em lodo de tratamento de água (ETA) e suas aplicações: uma revisão

Autores

  • Rennêr Ribeiro Pinto Universidade Federal da Paraíba

DOI:

https://doi.org/10.58203/Licuri.838510

Palavras-chave:

Lodo ETA, pirolise, calcinação

Resumo

No presente trabalho planejou-se revisar o tratamento de alta temperatura do lodo volumoso produzido a partir de estação de tratamento de água e suas diferentes aplicações podendo reformar o manejo desse resíduo de forma sustentável. Vários caminhos de reutilização foram identificados e investigados globalmente, como; adsorvente para contaminantes e metais pesados, como substrato em fabricação de membrana cerâmica, como material cimentício e substituto da areia na preparação de concreto e argamassa. Deveras, sua gestão e descarte ambientalmente corretos é uma tarefa desafiadora para cientistas e requer prudência. Este trabalho pode ajudar aos pesquisadores no aprimoramento dos estudos já existentes, a fim de ampliar os possíveis usos desse resíduo para o desenvolvimento sustentável.

Downloads

Não há dados estatísticos.

Referências

Bochi, V. C.; Barcia, M. T., Polyphenol extraction optimisation from Ceylon gooseberry. São Paulo: Editora Licuri. 64p.

Allen, A.; Sarmiento, J. P.; Sandoval, V. (2020). Los Estudios Latinoamericanos de Reducción del Riesgo de Desastres en el Contexto de la Pandemia del COVID-19. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres–REDER, v. 4, n. 2, p. 1-6. 2020.

Banai, R. Pandemic and the planning of resilient cities and regions. Cities, v. 106, p. 102929. 2020.

Choi, D., Oh, J. I., Lee, J., Park, Y. K., Lam, S. S., Kwon, E. E. Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium. Environment International, v. 132, 105037. 2019.

Dharwal, M.; Parashar, D.; Shuaibu, M. S.; Abdullahi, S. G.; Abubakar, S.; Bala, B. B. Water pollution: Effects on health and environment of Dala LGA, Nigeria. Materials Today: Proceedings, v. 49, p. 3036-3039. 2020.

Duan, W., Zhuge, Y., Pham, P. N., WK Chow, C., Keegan, A., Liu, Y. Utilization of drinking water treatment sludge as cement replacement to mitigate alkali–silica reaction in cement composites. Journal of Composites Science, v. 4, n. 4, p. 171. 2020.

Filho, V. A., Kulman, X. R., Tholozan, V. L., Felkl de Almeida, A. R., Silveira da Rosa, G. Preparation and characterization of activated carbon obtained from water treatment plant sludge for removal of cationic dye from wastewater. Processes, v. 8, n. 12, p. 1549. 2020.

González, K. B., Pacheco, E., Guzmán, A., Pereira, Y. A., Cuadro, H. C., Valencia, J. A. Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, v. 23, 100930. 2020.

Grassi, P., Drumm, F. C., Georgin, J., Franco, D. S. P., Foletto, E. L., Dotto, G. L., Jahn, S. L. Water treatment plant sludge as iron source to catalyze a heterogeneous photo-Fenton reaction. Environmental Technology & Innovation, v. 17, 100544. 2020.

He, Z. H., Yang, Y., Yuan, Q., Shi, J. Y., Liu, B. J., Liang, C. F., Du, S. G. Recycling hazardous water treatment sludge in cement-based construction materials: Mechanical properties, drying shrinkage, and nano-scale characteristics. Journal of Cleaner Production, v. 290, 125832. 2021.

Hung, C. M., Huang, C. P., Chen, C. W., Wu, C. H., Lin, Y. L., Dong, C. D. Activation of percarbonate by water treatment sludge–derived biochar for the remediation of PAH-contaminated sediments. Environmental Pollution, v. 265, 114914. 2020.

Junior, W. A. P.; Takeno, M. L.; Nobre, F. X.; Barros, S. D. S.; Sá, I. S.; Silva, E. P.; de Freitas, F. A. Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization. Energy, v. 213, p. 118824. 2020.

Kleemann, N., Torres, D. P., Ribeiro, A. S., Bamberg, A. L. Cold finger with semi closed reflux system for sample preparation aiming at Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, V and Zn determination in Drinking Water Treatment Sludge by MIP OES. Analytica Chimica Acta, v. 1096, p. 9-17. 2020.

Lai, K. Y.; Webster, C.; Kumari, S.; Sarkar, C. The nature of cities and the Covid-19 pandemic. Current Opinion in Environmental Sustainability, v. 46, p. 27-31. 2020.

Lee, Y. E., Shin, D. C., Jeong, Y., Kim, I. T., Yoo, Y. S. Pyrolytic valorization of water treatment residuals containing powdered activated carbon as multifunctional adsorbents. Chemosphere, v. 252, 126641. 2020.

Lee, Y. E.; Kim, I. T.; Yoo, Y. S. Stabilization of high-organic-content water treatment sludge by pyrolysis. Energies, v. 11, p.12, 3292. 2018.

Liu, Y., Zhuge, Y., Chow, C. W., Keegan, A., Li, D., Pham, P. N., Huang, J., Siddique, R. Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of environmental management, v. 262, 110352. 2020.

Marin, J. Global resilience models and territories of the South. A critical review. International Journal of Disaster Risk Reduction, v. 66, p. 102541. 2021.

Moraci, F.; Errigo, M. F.; Fazia, C.; Campisi, T.; Castelli, F. Cities under pressure: Strategies and tools to face climate change and pandemic. Sustainability, v. 12, n.18, p. 7743. 2020.

Mouratib, R.; Achiou, B.; El Krati, M.; Younssi, S. A.; Tahiri, S. Low-cost ceramic membrane made from alumina-and silica-rich water treatment sludge and its application to wastewater filtration. Journal of the European Ceramic Society, v. 40, p. 15, 5942-5950. 2020.

Nuanhchamnong, C., Kositkanawuth, K., Wantaneeyakul, N. Granular waterworks sludge-biochar composites: Characterization and dye removal application. Results in Engineering, 100451. 2022.

Pham, P. N., Duan, W., Zhuge, Y., Liu, Y., Tormo, I. E. S. Properties of mortar incorporating untreated and treated drinking water treatment sludge. Construction and Building Materials, v. 280, 122558. 2021.

Quang, H. H. P., Phan, K. T., Dinh, N. T., Thi, T. N. T., Kajitvichyanukul, P., Raizada, P., Nguyen, V. H. Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water. Environmental Research, 113410. 2022.

Ramirez, K. G., Possan, E., Bittencourt, P. R. S., Carneiro, C., Colombo, M. Physico-chemical characterization of centrifuged sludge from the Tamanduá water treatment plant (Foz do Iguaçu, PR). Matéria (Rio de Janeiro), v. 23. 2018.

Rashed, M. N., El Taher, M. A., Fadlalla, S. M. M. Synthesis and Photocatlytic Application of Drinking Water Treatment Sludge@ TiO2 Composite for Degradation of Methylene Blue Dye. Pollution, v. 6, n. 4, p. 785-799. 2020.

Roque, A.; Montalvan, E. L. T.; Boscov,M. E. G. Caracterização mineralógica, química e geotécnica do lodo da Estação de Tratamento de Água Taiaçupeba. Geotecnia, v. 151, p. 33-52. 2021.

Roque, A.; Montalvan, E.L.T.; Boscov, M.E.G. Caracterização mineralógica, química e geotécnica do lodo da Estação de Tratamento de Água Taiaçupeba. Anais do 6º Simpósio sobre Resíduos Sólidos, São Carlos, N.P. 2019.

Shahin, S. A., Mossad, M., Fouad, M. Evaluation of copper removal efficiency using water treatment sludge. Water science and engineering, v. 12, n. 1, p. 37-44. 2019.

Van Truong, T., Kim, D. J. Phosphate removal using thermally regenerated Al adsorbent from drinking water treatment sludge. Environmental Research, v. 196, 110877. 2021.

Wang, M., Liu, G., Wang, X. Wastewater post-coagulation sludge recycled as a multifunctional adsorbent via pyrolysis enhanced in carbon dioxide (CO2). Chemosphere, v. 291, 132964. 2022.

Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, v. 60, n. 4, p. 652-658. 2017.

Zhang, Y., Qin, J., Yi, Y. Biochar and hydrochar derived from freshwater sludge: characterization and possible applications. Science of The Total Environment, v. 763, 144550. 2021.

Zhang, Y., Xiangshi, P., Tian, J., Li, F., Fan, X., Ma, L., Zhang, R. Synthesis of peroxymonosulfate composite catalyst (Fe0/Fe3O4/biochar) using waterworks sludge and walnut shell for degrading methylene blue. Journal of Environmental Chemical Engineering, v. 9 n. 6, 106856. 2021.

Downloads

Publicado

05.11.2022